Algebraic Relations among Solutions of Linear Differential Equations

نویسندگان

  • MICHAEL F. SINGER
  • M. F. SINGER
چکیده

Using power series methods, Harris and Sibuya [3, 4] recently showed that if A: is an ordinary differential field of characteristic zero and y 5¿ 0 is an element of a differential extension of fc such that y and l/y satisfy linear differential equations with coefficients in fc, then y'¡y is algebraic over fc. Using differential galois theory, we generalize this and characterize those polynomial relations among solutions of linear differential equations that force these solutions to have algebraic logarithmic derivatives. We also show that if / is an algebraic function of genus > 1 and if y and f(y) or y and e¡ v satisfy linear differential equations, then y is an algebraic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method

To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...

متن کامل

Spline Collocation for system of Fredholm and Volterra integro-differential equations

The spline collocation method  is employed to solve a system of linear and nonlinear Fredholm and Volterra integro-differential equations. The solutions are collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. We obtain the unique solution for linear and nonlinear system $(nN+3n)times(nN+3n)$ of integro-differential equations. This approximation reduces th...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...

متن کامل

Exact solutions of a linear fractional partial differential equation via characteristics method

‎In recent years‎, ‎many methods have been studied for solving differential equations of fractional order‎, ‎such as Lie group method, ‎invariant subspace method and numerical methods‎, ‎cite{6,5,7,8}‎. Among this‎, ‎the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order‎. In this paper we apply this method f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010